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Exotic trees
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We discuss the scaling properties of free branched polymers. The scaling behavior of the model is classified
by the Hausdorff dimensions for the internal geometry,dL anddH , and for the external one,DL andDH . The
dimensionsdH andDH characterize the behavior for long distances, whiledL andDL for short distances. We
show that the internal Hausdorff dimension isdL52 for generic and scale-free trees, contrary todH , which is
known be equal to 2 for generic trees and to vary between 2 and` for scale-free trees. We show that the
external Hausdorff dimensionDH is directly related to the internal one asDH5adH , wherea is the stability
index of the embedding weights for the nearest-vertex interactions. The index isa52 for weights from the
Gaussian domain of attraction and 0,a,2 for those from the Le´vy domain of attraction. If the dimensionD
of the target space is larger thanDH , one findsDL5DH , or otherwiseDL5D. The latter result means that the
fractal structure cannot develop in a target space that has too low dimension.

DOI: 10.1103/PhysRevE.67.026105 PACS number~s!: 05.40.2a, 64.60.2i
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INTRODUCTION

In recent years the theory of random geometry@1# has
become a powerful method of investigating problems
many areas of research ranging from the statistical theor
membranes@2,3#, branched polymers@4–7#, and complex
networks @8,9# to fundamental questions in string theo
@10–12# and quantum gravity@13–15#.

These problems have in common that they can be
scribed by a dynamically alternating geometry which und
goes fluctuations of a statistical or quantum nature. The
namics of such fluctuations can be modeled using
concepts of the statistical ensemble and the partition func
in a way similar to what is done in particle physics by t
methods of lattice field theory.

Contrary to lattice field theory where the partition fun
tions run over field configurations on a rigid geometry, t
geometry itself is variable here. Since the geometry is
namical many features occur such as, for instance, geom
cal correlations or the influence of the random geometry
the fields living on it.

Similarly to the field theory, where the concepts of un
versality, critical exponents, correlations, etc. are indep
dent of whether one discusses a field theoretical mode
magnetism or a quantum theoretical model of particles, a
in the theory of random geometry many questions are in
pendent of details and may be addressed using general m
ods. General concepts can be best developed on an an
cally treatable model. In field theory, the role of a test bed
played by the Ising model, while in random geometry by t
branched-polymer model@16–19#.

Despite its simplicity the branched-polymer model ha
rich phase structure exhibiting different scaling properties
the fractal geometry and the correlation functions.

The model has internal and external geometry sec
similar to the Polyakov string@10#. Similar to the Polyakov
string, it can also be interpreted as a model for quant
objects embedded into aD-dimensional target space or
model of quantum gravity interacting withD-scalar fields.
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The term quantum gravity refers to a Euclidean Feynm
integral expressed by a sum over diagrams representing
nearest-neighbor relations between points of a discrete se
more realistic models the sum runs over higher-dimensio
simplicial manifolds and can be interpreted as a regulari
Feynman integral over Riemannian structures on the m
fold @11–13#. The insight that one can gain from the analy
solution of the branched-polymer model is very helpful f
considerations of more complicated models. In fact,
model has proven already many times to be extreme us
to test and develop various ideas concerning random ge
etry @16–20#.

In addition to this general interest, in this model there i
specific motivation that is related to the reduced supers
metric Yang-Mills matrix model@21#. This model was intro-
duced as a nonperturbative definition for superstrings@22#
and referred to afterwards as the IKKT model. The one-lo
approximation of this model leads to a model of graphs t
have as a backbone a branched polymer with power-
weights for the link lengths. The IKKT model is believed
provide a dynamical mechanism for the spontaneous bre
ing of the Lorentz symmetry from ten to four dimensio
@23#. If one tries to understand the breaking in terms of t
one-loop level approximation, one finds it to be related to
fractal properties of the branched polymers, which have
Hausdorff dimension equal to 4@23,24#. The question of the
spontaneous symmetry breaking was investigated also
many other methods with the help of which one was able
gain an insight into the underlying physical mechanis
@25–33#.

In this paper we extend the classification of free branch
polymers beyond the generic Gaussian trees from the Zim
Stockmayer universality class@4–7# which have the Haus-
dorff dimension DH54. We restrict the discussion t
branched polymers with nearest-vertex interactions and
excluded-volume effect, but extend it to power-law lin
length weights@34,35# as well as to power-law branchin
weights@20#.

The energetical costs of generating long links on the po
©2003 The American Physical Society05-1
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mer that has a power-law link length distribution is th
much smaller than for Gaussian ones. In the extremal si
tion, when the power-law exponenta of the link-length dis-
tribution ;x212a lies in the intervalaP(0,2), very long
links are spontaneously generated on the tree and their p
ence shifts the model to a universality class that can be ca
the class of Le´vy branched polymers, which similar as Le´vy
paths exhibit a different scaling behavior@34–39#.

The scaling properties and the universality class of
model depend also on the internal branching weights of
trees@20#. Under a change of the weights, the model m
undergo a transition from the phase of elongated trees
the internal Hausdorff dimensiondH52, known as generic
trees, to the phase of collapsed trees withdH5`, which are
localized around a singular vertex of high connectiv
@40,41#. In between, there is a phase of scale-free trees w
may have any Hausdorff dimension betweendH52 anddH

5` @9,20#. We show that the internal properties decoup
from the embedding in the target space, but on the other h
that they strongly affect the embedding: in particular, if t
internal geometry is crumpled, the external one also is. M
generally, we show that due to a factorization property
external Hausdorff dimension is related to the internal o
dH , as follows: DH5adH . Thus, we see that even fo
Gaussian trees, for whicha52, there is a whole spectrum o
nongeneric trees with the Hausdorff dimensionDH.4 for
which underlying tree graphs are scale-free withdH.2.

Many pieces of this classification have been discussed
Gaussian branched polymers@4–7# as well as for the interna
geometry of tree graphs@9,17,20,24# already. Several well-
known results have been summarized within the appendi
which we present a systematical treatment of the inte
geometry in terms of generating functions.

The extension of this classification to weights with pow
law tails and to the case when the internal geometry is n
generic is presented in the mainstream of the text. We
phasize on calculations of the two-point function
Throughout the paper we also stress the factorization p
erty of the internal and external geometry, which allows us
clearly separate the discussion of the internal geometry
fore considering the entire model. It also permits us to rev
many interesting relations between the correlation functi
of the external space to those for the internal geometry.

THE MODEL

We consider a canonical ensemble of trees embedded
D-dimensional target space. The partition function of the
semble is defined as a weighted sum over all labeled t
with N vertices. The set of such labeled trees, contain
NN22 elements, will be denoted byTN . The statistical
weight of a tree is given by a product of an internal weig
WT , which depends only on the internal geometry of t
tree, and an external one that depends on the positions o
~tree! vertices in the target space. We shall consider tr
with nearest-neighbor interactions for which the partiti
function reads
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ZN5
1

N! (
TPTN

WTE )
i 51

N

dDxi )̂
jk&

f ~rW jk!. ~1!

The external weight of a tree is a product of link weigh
f (rW jk) that depend exclusively on the link vectorrW jk5xW j

2xW k . Alternatively, the energy cost of the embedding of t
tree in the target space is a sum of the energy costs of
independent embedding of links. The second product in
~1! runs over the set of~unoriented! linked vertex pairs de-
noted by^ jk&.

The most natural choice of the internal weights isWT
51. We could entirely stick to this choice of weights, b
since we want to discuss the problem of universality we a
want to check whether a modification of the weights w
change the scaling properties and hence the universality@20#.

Here we will restrict our considerations to intern
weights, which can be written as a product of weightswq for
the individual vertices:

WT5wq1
wq2

•••wqN
. ~2!

Each vertex weight only depends on the degree of the ver
that is the number of links emerging from it. The intern
properties of the model are determined when the whole se
branching weights$wq% for q51,2, . . . ,̀ is specified. We
demand that

w1.0, wq>0, ws.0 ~3!

for all q52, . . . ,̀ and at least ones.2. If w1 were zero,
WT would vanish for all tree graphs, while if allwq for q
.2 were zero, then the weightsWT would vanish for all
trees except chain structures.

Note that the model is invariant with respect to trans
tions in the external space:xW i→xW i1dW . Because of the trans
lational zero mode, the partition function~1! is infinite. One
can make it finite by dividing out the volumeV5*dDx of
the translational zero mode:

zN5
ZN

V
. ~4!

This can, for example, be realized by fixing the position
the center of mass of the trees.

Trees that can be obtained from each other by a perm
tion of the vertex labels contribute with the same statisti
weight. For a tree withN vertices, there areN! such vertex
permutations. In order to avoid overcountings, one int
duces the standard factor 1/N! to the definition of the parti-
tion function ~1!. This factor divides out the volume of th
permutation group of the vertex labels. The number of
labeled trees counted with this factorNN22/N!;N25/2eN is
exponentially bounded in theN→` limit. If one defines the
grand-canonical partition function

Z5 (
N52

`

zNgN5 (
N52

`

zNe2mN, ~5!
5-2
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one can see that it is well defined as long as the fugacityg is
smaller than the radius of convergence of the series, whic
the particular caseWT51 is equal tog05e2m05e21. More
generally, as long aszN grows only exponentially for largeN,
the grand-canonical partition function has a nonvanishing
dius of convergence and hence one can safely defineZ.

The statistical average of a quantityQ defined on the en-
semble~1! is given by

^Q&N[
1

zN

1

N! (
TPTN

WTE )
i 51

N

dDxi )̂
jk&

f ~rW jk!Q. ~6!

For translationally invariant quantities, the averages are p
portional to the volumeV of the translational zero mode. Fo
such quantities one should rather speak of an average de
per volume element of the target space:^Q&N /V, which is a
finite number. In particular,̂1&N /V51.

We will frequently distinguish between the internal a
external geometry of the trees. By the former we mean
connectivity of the corresponding tree graph, by the latter
embedding in the external space. For example, the inte
~geodesic! distance between two verticesi andj of a graph is
defined as the number of links of the shortest path conn
ing them, while the external distance is given by the len
of the vectorxW i2xW j . Note that the path betweeni and j is
unique for tree graphs. Thus the length of this path, i.e.,
number of its links, determines the internal geodesic d
tance.

The properties of the embedding in the external sp
depend on the link weight functionf (rW) @see Eq.~1!#. We
consider isotropic weights depending only on the link leng
That meansf (rW)5 f (r ), where r 5urWu. We further assume
that f (rW) is a positive integrable function. Without loss o
generality, we can then choose the normalization to
*dDr f (rW)51. This allows us to interpretf (rW) as a probabil-
ity density.

CORRELATION FUNCTIONS

The fundamental quantities that encode the informat
about the statistical properties of the system are the corr
tion functions. For the canonical ensemble with the partit
function ~1!, them-point correlation functions are defined a

GN
(m)~XW A1

, . . . ,XW Am
![K )

k51

m

8
1

N (
ak51

N

d~xWak
2XW Ak

!L
N

,

~7!

where the bracketŝ•&N on the right-hand side denote th
average over the ensemble~6!. If one multiplies all sums in
the product in Eq.~7! one obtains a sum of terms that a
products ofd functions. The prime in Eq.~7! means that all
terms containing two or more identicald functions are
skipped from this sum. This exclusion principle applies on
to the situation when any two arguments
GN

(m)(XW A1
, . . . ,XW Am

) are identical.
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What we will show now is that the problem of determi
ing them-point correlation function can be divided into tw
subproblems. The first step is to determine the internal tw
point function. This can, in general, be done independen
of a particular choice of the embedding weightsf (rW). The
second is to use the information encoded in the internal t
point function to determine the external properties of t
trees.

In order to see that the internal geometry of the trees d
not depend on the choice of the link weight function, co
sider a tree graph and calculate the following two integr
for this tree:

E )
i 51

N

dDxi )̂
jk&

f ~rW jk!d~xWa2XW A!51, ~8!

E )
i 51

N

dDxi )̂
jk&

f ~rW jk!d~xWa2XW A!d~xWb2XW B!5 f n~XW B2XW A!.

~9!

The first integral corresponds to the embedding weight fac
for a tree whoseath vertex is fixed at the positionXW A in the
target space. Since the model is translationally invariant,
result of the integration does not depend on the position. T
result can be obtained by changing the integration variab
from the position vectors of all verticesiÞa to link vectors
rW jk5xW j2xW k for which the integration completely factorize
The Jacobian for such a change of the integration variable
equal to 1.

The second integral~9! gives the weight factor for a tree
whose verticesa andb are fixed at the positionsXW A andXW B
in the external space. The result depends only on the dif
enceXW [XW B2XW A and the number of links,n, of the path
connecting the verticesa and b. If one now changes the
integration variables from vertex positions to link vectors,
before, one can see that all integrations, except those
links on the path betweena andb, factorize. The sum of the
link vectors on the path is restricted toXW 5XW B2XW A . If we
label the links of the path by consecutive numbers from 1
n, we can write

f n~XW !5E )
i 51

n

@dDr i f ~rW i !#dS (
a51

n

rWa2XW D
5E dDp

~2p!D
@ f̂ ~pW !#ne2 ipW •XW , ~10!

where f̂ (pW ) is the characteristic function of the probabilit
distribution f (rW):

f̂ ~pW ![E dDr f ~rW !eipW •rW5^eipW •rW& f . ~11!

It is important that the results of the integrations~8! and~9!
do not depend on the internal geometry of the underly
tree graph. In particular, using Eqs.~8! and ~9!, we find the
5-3
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partition function~4!, the one-point, and two-point correla
tion functions to reduce to the following forms:

zN5
1

N! (
TPTN

WT , ~12!

GN
(1)~XW A!51, ~13!

GN
(2)~XW A ,XW B!5GN

(2)~XW !5 (
n51

N21

f n~XW !gN
(2)~n!. ~14!

We have denoted the~canonical! two-point function of the
internal geometry bygN

(2)(n):

gN
(2)~n!5

1

zN

1

N! (
TPTN

WTS 1

N2 (
a,bPT

d ua2bu,nD . ~15!

It is normalized to unity:(n50
N21gN

(2)(n)51. The normalized
internal two-point function gives us the probability that tw
randomly chosen vertices on a random tree of sizeN are
separated byn links. In the last formula the geodesic intern
distance between the verticesa andb is denoted byua2bu.

Equation~12! for zN , Eq. ~13! for GN
(1)(XW ), and Eq.~15!

for gN
(2)(n) are independent of the link weight factorf (rW).

Thus the properties of the internal geometry, as mention
can be considered independently of and prior to the emb
ding.

The external two-point functionGN
(2)(XW ) can be inter-

preted as the probability density for two random vertices
a tree of sizeN to be embedded in the external space with
relative positionXW 5XW B2XW A . The probability normalization
condition reads:

E dDXBGN
(2)~XW A ,XW B!5GN

(1)~XW A!51. ~16!

The right-hand side of Eq.~14! can be understood as a co
ditional probability. First, we choose two random vertices
a tree of sizeN and calculate the probabilitygN

(2)(n) that
there aren links on the path connecting them. For this pa
which is a random path in the embedding space consistin
n links, we can calculate the probability~density! f n(XW ) that
its end points are located with the relative positionXW 5XW B

2XW A . Since the internal geometry decouples from the ex
nal one, the probability densitiesf n(XW ) and gN

(2)(n) are in-
dependent of each other and can hence be calculated
rately.

Similarly, higher correlation functions can be obtain
from the corresponding internal correlation functions. F
example, the three-point correlation function is

GN
(3)~XW A ,XW B ,XW C!5 (

na ,nb ,nc

gN
(3)~na ,nb ,nc!E dDX

3 f na
~XW A2XW ! f nb

~XW B2XW ! f nc
~XW C2XW !.

~17!
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The three pathsab, bc, andac between the verticesa, b,
and c of the tree can be decomposed into three piec
namely,am, bm, cm between them and the common midd
point m. The summation indicesna , nb , nc denote the inter-
nal lengths of these pieces, andXW denotes the position of the
common vertex in the external space. The internal thr
point function then reads

gN
(3)~na ,nb ,nc!5

1

zN

1

N! (
TPTN

WTS 1

N3 (
a,b,cPT

d ua2bu,na1nb

3d ub2cu,nb1nc
d ua2cu,na1ncD . ~18!

One could extend this construction further.
Note that the most important piece of information is a

ready encoded in the two-point function and is inherited
the higher correlation functions. In fact, one can directly d
rive the higher correlation functions from the two-point fun
tion, using a simple composition rule for the tree grap
which enormously simplifies in the grand-canonical e
semble. In the following section we shall thus concentrate
the two-point function.

FRACTAL GEOMETRY

The canonical two-point correlation functionsgN
(2)(n) and

GN
(2)(XW ) contain the information about the fractal structure

the internal and external geometry, respectively. The aver
distance for the internal geometry, given by the average n
ber of links between two vertices on the tree, is the fi
moment of the probability distribution~15!:

^n&N5(
n

ngN
(2)~n!. ~19!

One expects the following scaling behavior for largeN:

^n&N;N1/dH. ~20!

The exponentdH relates the systems average~internal! ex-
tent ^n&N to its sizeN and is thus called the internal Hau
dorff dimension. This exponent controls the behavior
large distances growing with the system sizeN. One can also
introduce a local definition of the fractal dimension for di
tances in the scaling window 1!n!N1/dH. The scaling win-
dow contains distances between the scale of the ultravi
cutoff and below the infrared scale set by the system s
This is a sort of thermodynamic definition, which becom
valid locally for sufficiently largeN. In a large system one
can be interested in how the volume of a local ball~or
sphere! depends on its radiusn. The volume of the sphere
can be calculated as the number of vertices lyingn links
apart from a given vertex:

gN→`
(2) ~n!;ndL21 for 1!n!N1/dH. ~21!

The definitiondL is more practical for a local observer, fo
example, someone who lives in a fractal geometry and wa
5-4
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to determine its fractal dimension. The global definitiondH
is accessible only for an observer who can survey the wh
system from outside@42#.

In a similar way we can define the external Hausdo
dimension. In order to do this, we first have to introduce
measure of the system’s extent in the external space. Su
measure is provided by the gyration radius

R25
1

N2 (
i , j

~xW i2xW j !
25

2

N (
i

~xW i2xWCM!2, ~22!

wherexWCM5( ixW i /N is the target space position of the sy
tem’s center of mass. The statistical average of the gyra
radius is directly related to the two-point function, namel

1

V
^R2&N5E dDXXW 2GN

(2)~XW !. ~23!

Since the gyration radius is a translationally invariant qu
tity, we have to normalize it with the total volume of th
target space and rather refer to its average density. The
ternal Hausdorff dimensionDH can then be read off from th
largeN behavior:

A^R2&N;N1/DH. ~24!

The dependence on the volumeV is hidden in an
N-independent constant which is not displayed in the
formula. The symbol; refers to the leading behavior.

For trees of sufficiently large sizeN, one can also define
local fractal dimensionDL @24# of the external geometry by
measuring the average number of vertices within a sphe
shell of radiusX5uXW u from the scaling windowXUV!X
!aN1/DH, which is defined above the ultraviolet cutoff sca
and below the infrared scale. As follows from the definiti
~7! for the case of a two-point function, the number of ve
tices within a spherical shell of widthdX is given by the
two-point function@24#

n~X!dX;XD21GN
(2)~X!dX;XDL21dX. ~25!

Here we have used the fact that the the two-point functio
spherically symmetric, i.e.,GN

(2)(XW )5GN
(2)(X). The integral

over theD-dimensional angular part is included in the pr
portionality constant. In the largeN limit, one expects the
existence of a windowXUV!X!aN1/DH, where the two-
point function exhibits the scaling behavior@24#

GN
(2)~X!;X2d. ~26!

If d is negative, thenGN
(2)(X) behaves as a slow varyin

function of X, which can in a narrow range and with som
corrections be viewed as a constantGN

(2)(X);1. Thus de-
pending on the value ofd, we have

n~X!dX;XDL21dX;H XD21dX for d<0

XD212ddX for d.0.
~27!
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In the first case (d<0), the number of points in a spherica
shelln(X) grows with the power of the canonical dimensio
D. Only in the second one (d.0) the fractal nature leave
traces in the calculation ofDL .

UNIVERSALITY CLASSES AND SINGULARITY TYPES

In this section we will briefly summarize results concer
ing the classification of the scaling behavior according to
internal geometry of the trees@9,20#. One defines the critica
exponentg of the grand-canonical susceptibility via

xm5
]2Z
]m2

;Dm2g, ~28!

where Dm[m2m0 controls the behavior of the partitio
function at the radius of convergenceg05e2m0 of the series
~5!. Herem0 is the critical value of the chemical potential.
g is positive, the susceptibilityxm itself is divergent atm0. If
it is negative, the right-hand side of the last equation sho
be understood as the most singular part of the susceptib
which, after taking higher derivatives, will give the leadin
divergence. The primary classification of the universal
classes for models of branched geometry is based on
value of the susceptibility exponentg.

The susceptibility exponent gives the subexponential
havior of the canonical coefficentszN for large N: zN
;Ng23exp(m0N). Indeed, if one inserts this form into th
definition of the partition function~5!, one obtains

xm5
]2Z
]m2

5(
N

N2zNe2mN;(
N

Ng21e2DmN;Dm2g.

~29!

The susceptibilityxm is proportional to the first derivative
of the grand-canonical partition functionF for planted
rooted trees, defined by Eq.~A5! in the Appendix: xm
;]F/]m. The reason why this relation is useful is that the
exists a closed relation—a so-called self-consistency rela
~A8!—for F:

g5g~F!5
F

(
q50

`
wq11

q!
Fq

, ~30!

which can be inverted forF5F(g) and from which one can
extract the singular part ofF: F;Dg12g and hence also o
xm . Note that the denominator of Eq.~30! is nothing but the
first derivative of the potentialV(F) defined by Eq.~A1!
within the Appendix.

One can invert the functiong(F) in the region where it is
strictly monotonic. Generically,g(F) grows monotonically
from zero forF50 to some critical valueg0 at F0, where
g8(F0)50. Clearly the inverse functionF has a square roo
singularity atg0 : F;ADg then. It follows thatg51/2 for
the class of generic trees.
5-5
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The region of the monotonic growth of the function on t
right-hand side of Eq.~30! may be limited byF0, being the
radius of convergence of the series in the denominato
g(F).

The inverse functionF(g) is then singular atg0
5g(F0), with a singularity inherited from the singular be
havior of g(F) at F0. It can be shown that in this case th
susceptibility exponent is negative and the correspond
trees are collapsed.

In the marginal situation, the two conditions that limit th
region of the monotonic growth ofg(F) work collectively at
a pointF0, being at the same time the radius of converge
of the series in the denominator ofg(F) and the zero of the
derivativeg8(F0)50. In this case the exponentg can as-
sume any value within the interval@0,1/2). Trees that belong
to this class are called scale-free@9#.

The three classes correspond to different scaling beh
iors of the two-point function, as will be discussed in t
following section.

INTERNAL TWO-POINT FUNCTION

In this section we shall calculate the two-point functi
for the internal geometry. This function will enable us
determine the scaling and the fractal properties of the in
nal geometry of tree graphs. As we will show, they are d
ferent for generic, collapsed, and scale-free trees.

In the appendix, we deduce an explicit formula~A15! for
the grand-canonical two-point functionG (2)(m,n). This
function is singular forDm5m2m0→01, and its singular-
ity is related to the largeN behavior of the canonical two
point functionG N

(2)(n). The singularity ofG (2)(m,n) can be
determined directly from the identity~A15! by inserting the
most singular part ofDF into V8(F) andV9(F). Here we
will show an alternative way, using a standard scaling ar
ment from statistical mechanics@43#. We denote the singu
larity exponent of the two-point funtion byn:

G (2)~m,n!;exp@2c~n11!Dmn#, ~31!

where c is a constant that only depends on the particu
choice of the weightswq . The exponentn is usually called
the mass exponent. Summing over distancesn, we obtain the
susceptibility~29!:

xm5(
n

G (2)~m,n!;E dn exp~2cnDmn!;Dm2n.

~32!

According to the definition~29!, the susceptibility exponen
is g. Thus we have

n5g. ~33!

This relation is the Fisher scaling relation for this case. Si
we have already determinedg, we do not have to calculaten
additionally. The scaling argument given above holds o
for positive g, since in this case the susceptibility is dive
gent and the divergent part dominates the smallDm behav-
ior. For negativeg, the left-hand side of Eq.~29! is not
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divergent, which means that it behaves as a constant asDm
goes to zero. In this case, if one compares the result of
integration~32! to the leading behavior of Eq.~29!, one shall
effectively see thatn50. This is what happens in the co
lapsed phase.

Now, inserting the most singular part of the gran
canonical two-point function~31! into the inverse Laplace
transform~A20! we can deduce the largeN behavior of the
canonical two-point function

G N
(2)~n!;e1m0NLn~cn,N!, ~34!

where

Ln~cn,N!5
1

2p i Ejr2 i`

jr1 i`

dje2cnjn1jN ~35!

is the Lévy distribution with the indexn, the maximal asym-
metry, and the rangeC5cn cos(pn/2) @35,44#.

The largeN asymptotic behavior ofLn(cn,N) with n
,1 is given by the following series@44#:

Ln~cn,N!5
1

pN (
k51

`

~2 !k11S cn

NnD k
G~11kn!

G~11k!
sin~pnk!.

~36!

For largeN and fixedn, the first term dominates the behavio
of the series:

Ln~cn,N! ;
N→`nG~n!sin~pn!

p
cn

N11n
. ~37!

We see from the formulas~34! and ~35! that the two-point
correlation function in the largeN limit is effectively a func-
tion of the argumentcn/Nn. Indeed, if one changes the inte
gration variablej in Eq. ~35! to j85jN, one obtains
Ln(cn,N)5N21Ln(cn/Nn,1)5N21l n(u), where l n(u) is a
function of a single argumentu5ncn/Nn. For later conve-
nience, we also includedn into the definition of the universa
argument. Using the saddle point approximation to the in
gral ~35!, one can find that for largeu5ncn/Nn the function
l n(u) leads to

G N
(2)~n!;

1

N
e1m0Nl n~u!5

Aa

A2pN
e1m0Nua/2exp~2bua!,

~38!

wherea51/(12n) andb5(12n)/n. The average interna
distance between two vertices can then be calculated:

^n&N5(
n

ngN
(2)~n!5

Nn

nc

E
0

`

duln~u!u

E
0

`

duln~u!

. ~39!

Comparing theN dependence on the right-hand side of th
equation to theN dependence on the right-hand side of E
5-6
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~20!, which defines the internal Hausdorff dimensiondH , we
see thatdH is the inverse ofn:

dH5
1

n
5

1

g
. ~40!

Thus, the Hausdorff dimension isdH52 for generic trees.
For scale-free trees,dH changes continuously from 2 tò,
sinceg belongs to the interval@0,1/2) then@9,17,20#.

On the other hand, we see from Eq.~37! that for largeN
and smalln, the normalized two-point function grows lin
early with n, i.e.,

gN→`
(2) ~n!;n. ~41!

The normalization coefficient behaves asc/N in the largeN
limit. Since the sum over this function is proportional to t
number of vertices in the distancen from a given vertex, the
last formula tells us that the local Hausdorff dimension
dL52. We see that locally for sufficiently largeN, it is dif-
ficult to distinguish the scale-free trees from the generic o
by measuring short internal distances, since both cla
have the same internal Hausdorff dimensiondL52. One has
to go to large distances to see different scaling propert
depending on the type of the ensemble~38!. For collapsed
trees, the Hausdorff dimension is infinite. In this case,
universal scaling argumentu of the two-point function is
proportional ton but does not depend onN. This is related to
the fact discussed before that the effective value of the
ponentn is equal to zero.

The saddle point approximation~38! actually gives the
exact result forn51/2 for the whole range ofu. The reason
for this is that in this case the integrand of the approxima
expression~35! is Gaussian. For some specific values ofn
one can express the Laplace transform~35! in terms of spe-
cial functions. For example, forn51/3,

L1/3~cn,N!5
1

N

A3

p
u3/2K1/3~2u3/2!, ~42!

whereu5ncn/Nn. For largeu, the saddle point formula~38!
coincides with this one, while for smallu, the two functions
deviate a little from each other.

GAUSSIAN TREES

Now we can determine the properties of the external
ometry of Gaussian trees. In this case, the weightf (xW ) in the
partition function~1! for embedding a linkxW is given by a
Gaussian function. The function has a vanishing mean,

f ~xW !5~2ps2!2D/2expS 2
xW2

2s2D . ~43!

In other words, for Gaussian trees, the link vectors are in
pendent identically distributed Gaussian random variable

As a consequence, the probability densityf n(XW ) Eq. ~10!,
for the end points of the path of lengthn on a tree to have the
relative coordinateXW is given by
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f n~XW !5~2pns2!2D/2expS 2
XW 2

2ns2D 5S 1

An
D D

f S XW

An
D .

~44!

This follows from the stability of the Gaussian distributio
with respect to the convolution. Inserting the functionf n(XW )
to the formulas~14!, ~17!, etc., we can determine the mult
point correlation functions for Gaussian trees. In particular
we insert Eq.~44! into Eq. ~14!, we obtain in the largeN
limit,

GN
(2)~XW !5

c

N~2ps2!D/2 (
n51

`

n12D/2expS 2
XW 2

2ns2
2

cn2

2N D .

~45!

Here we used the same approximation for the internal tw
point function as in the discussion of Eq.~A22! in the Ap-
pendix. This is a good approximation for largeN. Addition-
ally, we substituted the upper limitN21 of the summation
overn by `. This introduces small corrections that disappe
exponentially in the largeN limit.

In order to measure the external Hausdorff dimensionDH
we have to determine the dependence of the expecta
value^R2&N of the gyration radius on the system sizeN. The
expectation value can be calculated by integrating the t
point function overXW as in Eq.~23!. If one first integrates
over XW before summing overn, one obtains

1

V
^R2&N5

cDs2

N (
n51

`

n2expS 2
cn2

2N D . ~46!

One can approximate the right-hand side by replacing
summation from 1 tò through an integration over th
whole positive real axis:

1

V
^R2&N5

cDs2

N E
0

`

dyy2expS 2
cy2

2N D;Ds2AN

c
.

~47!

We see that the typical extent of the system,A^R2&N, grows
as N1/4 and hence the Hausdorff dimension for gene
Gaussian trees isDH54.

More generally, in order to determine the dependence
the expectation value of the gyration radius on the sys
size for any type of trees, one can first calculate the sec
moment of the functionf n(XW ):

^X2&n[E dDXXW 2f n~XW !, ~48!

which corresponds to the average extent of the path built
of n links of the tree. The insertion of this result into Eq.~23!
yields

1

V
^R2&N5(

n
^X2&ngN

(2)~n!. ~49!
5-7
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Since for Gaussian weights the second moment^X2&n is pro-
portional to n, i.e., ^X2&n;n, the following relation holds
@45#:

^R2&N;(
n

ngN
(2)~n!5^n&N;N1/dH, ~50!

from which we conclude that the external and internal Ha
dorff dimensions are related by

DH52dH ~51!

for Gaussian trees. This relation holds for generic, scale-f
and collapsed trees. This, for example, means that the H
dorff dimensionDH of collapsed trees is infinite, or in othe
words, that the target space extent of the system does
change with the number of vertices on the tree. The gen
trees for whichdH52 and DH54 belong to the Zimm-
Stockmayer universality class@4,5#.

Let us come back to generic Gaussian trees. We will c
culate the local Hausdorff dimensionDL and compare it with
DH54. The starting point of this calculation is Eq.~27!,
which relates the number of points within the shell of rad
betweenX andX1dX to the behavior of the two-point func
tion in the scaling windowXUV!X!XIR , whereXUV;s,
XIR;aN1/4.

The two-point function~45! is a decreasing function. I
has a cutoff atX;aN1/4 as follows from the scaling argu
ments. The largen part of the sum~45! overn (n@1) can be
approximated by an integral overn. This part of the sum has
a significant contribution ifz5X2/s2@1. Thus forX@s the
dominant dependence of the sum onX can be approximated
by

GN
(2)~X!;E

c1

c2AN
dnn12D/2e2z/n;z22D/2, ~52!

with some constantsc1 ,c2. The upper limit of the integra
comes from the term exp(2cn2/2N). The exact shape of th
integrand at largen;AN is unimportant forD.4, because
the dominating behaviorGN

(2)(X);z22D/2;X42D is due to
the lower limit of the integration. This scaling form o
GN

(2)(X) breaks down for short distancesX of orders and for
largeX of the order of the infrared cutoffaN1/4. WhenX is
of the orders, the integrand is a sum of Gaussians of widt
larger thanX and henceGN

(2)(X) is a slow varying function.
For D<4 the regime changes. The divergence at sman

disappears and the terms for largen, n;AN, dominate in the
sum. The sum~45!, viewed as a function ofX, looks like a
sum of Gaussians whose argumentsX are maximally of the
order of the widths. This is a slow varying function ofX for
X2/s2AN. Hence we expect that as long asX!N1/4 it is
almost constant,GN

(2)(X);1. As an example, we performe
the sum~45! numerically forN up to 106. The results pre-
sented in Figs. 1 and 2 corroborate the anticipated beha
of GN

(2)(X) by the arguments given above@46#.
As a consequence we see that the number of points w

the spherical shell~27! depends on the radiusX as
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n~X!;H XD21 for D<4

X3 for D.4.
~53!

This leads to the following result for the Hausdorff dime
sion:

DL5H D for D<4

4 for D.4.
~54!

In other words, the fractal dimensionDL measured by the
local observer is equal to the global one, i.e.,DH5DL , if the
dimension of the target space is large enough. If the ta
space dimensionality is too small, the fractal structure can
develop. One can understand this in the following way. F
trees embedded in aD,4 dimensional target space, vertice
of the tree lie in a ball with a radius proportional toN1/4.

FIG. 1. The normalized two-point function forD52 and for
N5103, 104, 105, and 106, from left to right, respectively. The
functions are constant in the region of smallX. This region extends
to some cutoff whose position grows with the powerN1/4.

FIG. 2. The normalized two-point function forD510 and for
N5103, 104, 105, and 106, from left to right, respectively. The
functions are constant in the region of smallX. Then they develop a
scaling part~linear in the figure! in which they behave as}X26.
For a comparison of the slopes, we also displayed~solid line! a pure
power law,}X26.
5-8
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There areN vertices within the ball while the volume of th
ball is proportional toND/4. This means that for largeN, the
vertices deep inside the ball are densely and uniform
packed. A local observer who surveys only a small region
from the ball boundary will see uniformly distributed vert
ces in aD-dimensional space. As a consequence he or
will measureDL5D. The situation changes forD.4, be-
cause then the volume of the ball is proportional toND/4 and
hence grows much faster than the number of the vertices
the largeN limit, the volume of the ball will therefore be
large enough to let the system develop a loose fractal st
ture.

Similarly, we expect that for the scale-free trees, the lo
Hausdorff dimension is

DL5H D for D<DH

DH for D.DH .
~55!

Since the Hausdorff dimensionDH is infinite for col-
lapsed trees, one cannot define a local Hausdorff dimen
DL in the same manner as above, because the infrared c
is a constant in this case.

LÉVY TREES

So far we have only considered Gaussian embedd
weights f (xW ), Eq. ~43!. In this case, links typically have th
lengths and one can hardly find a link on a tree longer th
3s. In other words the energy costs for the embedding
long links are so high that these links do not appear. One
however, consider models with weights which allow lo
links. Such models are natural generalizations of the L´vy
random walk@34,35#. In the following section we will dis-
cuss this issue in a more general context, while in this s
tion, as toy models, we will consider models of trees emb
ded inD51 dimensional target space with the weigths giv
by a symmetric Le´vy distribution@35,44#. Despite their sim-
plicity, the models with those weights already basically ca
ture all interesting features of more complicated models. T
weights read

f ~x!5La~A,x!5~2p!21E
2`

1`

dp exp~2Aaupua2 ipx!,

~56!

with a from the interval (0,2#. In the limiting casea52,
this is a Gaussian distribution with the widths5A2A, and
for a51, it is a Cauchy distribution.

The weights are symmetric stable distributions with t
stability indexa. Here we are interested only in symmetr
functions f (x)5 f (2x), because the links are unoriente
This implies that any function defined on them has the pr
erty f (r i j )5 f (2r i j )5 f (2r j i )5 f (r j i ).

The distribution~56! is stable with respect to the convo
lution

La~A,x!5E
2`

1`

dx1La~A1 ,x1!La~A2 ,x2x1!, ~57!
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a . If one repeats this for the convolutio
of n identical terms to calculatef n(X), Eq. ~11!, one can see
that the functionf n(X) is given by a rescaled version of th
function for a single link,f (X):

f n~X!5
1

n1/a
f S X

n1/aD . ~58!

Now we can combine this scaling with the scaling of t
internal two-point function, which, as we know, is a functio
N21l n(v) of a scaling variablev5n/Nn, to deduce the scal
ing of the external two-point function~14!:

GN
(2)~X!5(

n
f n~X!gN

(2)~n!;
1

NE dn

n1/a
f S X

n1/aD l nS n

NnD .

~59!

The result of the integration can be written as a function
an argumentX/Nn/a with some prefactor depending onN. As
a consequence, one expects the external Hausdorff dim
sion to be

DH5a/n5adH . ~60!

The casea52 was discussed before. Despite similaritie
the casea,2 is different from the Gaussian one, since
this case the distributionf (x) has a fat tail for largex:

dx f~x!;
dx

x

Aa

xa
, ~61!

which according to the scaling~58! is equally important in
f n(X) for any n. The second moment^X2&n of the distribu-
tion f n(X) is infinite. As a consequence, also the gyrati
radius is infinite. One has to find an alternative measure
the linear system extent in order to define the Hausdorff
mensionDH . A natural candidate for such a quantity is

Rq5
1

N2 (
i , j

uxi2xj uq ~62!

for q,a. The Hausdorff dimension can now be calculat
from the largeN behavior of this quantity:

^Rq&N;Nq/DH. ~63!

Using the same arguments as for the Gaussian case, on
check that the following relations hold:

1

V
^Rq&N5E dXuXuqGN

(2)~X!5(
n

^uXuq&ngN
(2)~n!,

~64!

where

^uXuq&n5E dXuXuqf n~X!;nq/a. ~65!
5-9
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It follows, that ^Rq&N;Nq/adH and henceDH5adH , as al-
ready mentioned.

OTHER TREES

We will continue the discussion of the one-dimension
case, i.e.,D51. The extension to higher dimensionsD shall
afterwards be straightforward. The embedding weights
links may, in general, be given by any normalizable no
negative symmetric function:f (x)5 f (2x)>0 such that
*dx f(x)51.

We are interested in the emergence of the scaling pro
ties for largeN. From the considerations of the internal g
ometry, we know that the internal distance between two r
dom vertices on the tree,n;N1/dH, grows withN unless the
trees are collapsed.

We also know that between these two random vertices
can draw a unique path on the tree. This path can be tre
as a random path ofn links. So, in a sense, we are interest
in the probability distribution that the remote ends of t
random path withn links have the the relative positionX in
the embedding space. In particular, we are interested in
limit n→`. This probability distribution is given byf n(X).
For largen the function f n(X) can be determined from th
central limit theorem. Roughly speaking, if the second m
ment of f (x) exists, f n(X) approaches a Gaussian distrib
tion with the variancesn5Ans, otherwise f n(X) ap-
proaches the Le´vy distribution~56! with the scale paramete
An5n1/aA. Thus, if a distribution has a power tailf (x)
;x212a for largex, the limiting distributionf n(X) for large
n will approach the Gaussian distribution ifa.2, or the
Lévy distribution ~56! if a,2 @35,44#. The limiting case
f (x);x23 belongs to the Gaussian domain of attraction
it has a logarithmic anomaly of the variance, which in th
case does not grow asAn but faster, i.e., with some add
tional logarithmical factor ofn.

For a.2 the approach off n(X) to the Gaussian distribu
tion for largen is nonuniform and takes place in the cent
region of the distributionf n(X) for uXu,X* , where X*
scales withn as

X* ;bAn ln n. ~66!

Here b is some constant@47# representing a scale of th
distribution. Outside this regionf n(X) deviates severely
from the normal law, and in particular it preserves the pow
law tail for X@X* :

dX fn~X!;
dX

X

nAa

Xa
, ~67!

with a tail amplitude proportional ton. In other words, for
any finite n the power-law tail is present in the distributio
f n(X). Therefore all absolute moments of orderQ.a of this
distribution are infinite:

^uXuQ&n5` ~68!

for finite n, and as a consequence also
02610
l

r
-

r-

-

e
ed

he

-

t

l

r-

^RQ&N5E dXXQGN
(2)~X!5(

n
^uXuQ&ngN

(2)~n!5`.

~69!

For N→` the sum is dominated by terms of largen
;N1/DH. For n→` the distributionf n(X) becomes norma
in the whole region from2` to 1`. Indeed, the ends of the
central regionX* move to infinity faster than the varianc
sn;An, and the contribution coming from the outside of th
central regionuXu.uX* u disappears as

E
uXu.X

*

dX fn~X!;
1

na/221lna/2n
. ~70!

Thus the non-Gaussian part including the tails becomes m
ginal and can be neglected. What is left over forn5` is a
Gaussian distribution with all moments defined. For e
ample, even integer momentsQ52K are ^X2K&n5(2K
21)!!(ns2)K. Thus, after taking this limit, the trees behav
like Gaussian ones. This limit is subtle, because as long aN
~and n) is large but finite, higher moments,Q.a, of the
distribution are infinite.

Now we shall briefly discuss the model inD.1 dimen-
sions. As before we consider spherically symmetric distrib
tions f (xW )5 f (x), x5uxW u, which have a power-law depen
dence for large lengths of the link vectorsf (x);x2D2a:

dDx f~xW !5dVDdxxD21f ~x!;dVDdxx212a, ~71!

where dVD is the angular part of the measure. The ma
difference from the one-dimensional case is that the effec
power of the link-length distribution changes byD21 due to
the angular measurexD21. Otherwise, the dependence of th
scaling ona goes in parallel to the one-dimensional cas
that is, the distribution belongs to the Gaussian domain
attraction ifa>2 and to the Le´vy one if a,2. The charac-
teristic function~11! of the corresponding limiting distribu
tion is spherically symmetric: exp(2Aâpâ), where p5upW u
and â5min$2,a%. For example, a distribution that has
power-law tailf (x);x212D belongs to the domain of attrac
tion of the Cauchy distribution:

f ~xW !5
1

~2p!D
E dDqe2AAqW 22 iqW xW

5

GS D11

2
D

p (D11)/2

A

~A21xW2!(D11)/2
. ~72!

An effect that arises in higher dimensions is a possibility o
spontaneous breaking of the rotational symmetry. The lim
ing distributions for N→` and the two-point function
GN

(2)(XW ) are spherically symmetric, but the configuratio
that contribute to them are not. The effect is strong whena
<1 and is known from the considerations of Le´vy paths
@35#. If we have such an ensemble ofN links, one can find a
link whose length isN1/a larger than the sum of the length
5-10



ke
m
e

m

e

n
e
.
-
.
er
re

o
th
rg
e
n

nt
e
ys

s

in
ro
fo
e
i

n

e

rn
e

a-
, i
ct

o

he

s
pi
er
io

and
s-

e,
pro-
ial
ects

er-
rs.
di-

self-
the

e
eric
d

ar-
-

ish

e
t.

in-

we
ter-
ing
t to
ula-
are
ing
of
the

ust
te

e
ality
s.
er

hts

-
le,

EXOTIC TREES PHYSICAL REVIEW E67, 026105 ~2003!
of the remaining links. This link makes the system look li
a one-dimensional system, since the extent of the syste
the direction of this link is significantly larger than in th
other directions. The effect becomes weaker whena is larger
than 1. Actually it is then seen for configurations that co
from the largeX tail of the two-point functionGN

(2)(X). This
configurations become marginal fora.2 in the largeN
limit. However, as long asN is finite, the probability of large
X in GN

(2)(X) is finite and it strongly influences the measur
ments of higher momentŝRQ&N of the system extent. In
other words, the higherQ is, the stronger is the contributio
from the largeX part of the two-point function, and the mor
the systems that are elongated contribute to this quantity
the limiting caseQ→a, the main contribution to the mo
ments^RQ&N comes from one-dimensional configurations

As mentioned, the branched-polymer model with pow
law weight arises as the one-loop approximation of the
duced supersymmetric Yang-Mills model@23#. In particular,
for D54 dimensions, the embedding weightsf (x) behave as
f (x);x2D2a;x26 for large link lengthsx. This is the mar-
ginal casea52 which belongs to the Gaussian domain
attraction. This means, in particular, that if one first takes
limit N→`, then the Gaussian branched polymers eme
for which all correlation functions are well defined. On th
other hand, if one determines higher correlation functio
before one takesN→`, one shall see that they are diverge

In numerical simulations of the full matrix model, on
also observes power-law tails in the distribution of the s
tem extent and one-dimensional configurations@25–29#. It is
possible@27#, but not yet answered, that there also exist
Gaussian limit at largeN in this model.

DISCUSSION

We investigated the model of trees embedded freely
D-dimensional target space. We classified the scaling p
erties of the model by determining the fractal dimensions
internal and external geometry for the ensembles of gen
@4,5# and exotic trees, including those that have fat tails
the distributions of branching orders@20# and of link lengths
in the embedding space, the latter of which are extensio
random linear polymers@34,35#. We showed that, for freely
embedded trees, internal geometry is independent of the
bedding as a result of the factorization~14!. On the other
hand, external geometry strongly depends on the inte
one: in particular, the Hausdorff dimension for external g
ometry is proportional to that for the internal oneDH
5adH . The proportionality coefficient is given by the st
bility index of the embedding weights. For Gaussian trees
particular, it is equal 2. We pointed out that the finite effe
related to the presence of fat tails lead to singularities
higher order correlation functions before the inifinite largeN
limit is taken. This is a similar effect to that observed in t
IKKT matrix model @22#.

The branched-polymer model captures many feature
the more complicated models of random geometry. Des
its simplicity, the model has a rich phase structure: a gen
phase of Gaussian trees that have the Hausdorff dimens
DH54, the phase of short trees withDH.4 coming from
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the embedding of scale-free and crumpled tree graphs,
the phase with elongated Le´vy branches that have the Hau
dorff dimensionDH,4.

Due to the simplicity, and the full control of the free cas
the model of branched polymers that we discussed here
vides a good starting point for modeling effects of nontriv
embedding, such as those related to excluded-volume eff
@48–50# or external curvature@51,52#. Such effects violate
the factorization introducing correlations between the int
nal and external geometry. A sort of back coupling occu
The external geometry affects the internal one, which mo
fies and influences back the external one. For example,
avoidance disfavors crumpled trees and hence changes
internal Hausdorff dimension, which in turn will change th
external one as was extensively discussed for the gen
Gaussian trees@48–50#. The effect of self-avoidance shoul
influence the fractal dimensionsdL ,dH ,DL ,DH also for ex-
otic branched polymers, nongeneric or Le´vy trees, similar to
the way does for self-avoiding Le´vy random walks@35–39#.
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APPENDIX

This Appendix summarizes important relations of the
ternal geometry of branched-polymer models@6,7,20,53#. It
is intended to make this paper more self-contained. As
already mentioned, the part of the model related to the in
nal geometry decouples from the problem of the embedd
and can hence be solved independently. It is convenien
introduce several generating functions to ease the calc
tions. Although many of the considerations made here
well known, we deduce several relations for the generat
functions which play important roles in the description
branched-polymer models. Graphical representations of
generating functions turn out to be effective tools for the j
mentioned deductions. Finally we will be able to calcula
the partition functionzN , Eq. ~12!, and the two-point func-
tion gN

(2)(n), Eq. ~15!, of the internal geometry. Note that w
already discussed the scaling properties and the univers
resulting from those calculations in the preceding section

Recall that the internal properties of a branched-polym
model ~1! only depend on the internal weight functionWT .
For internal weights of the form~2!, these properties are
entirely determined when the whole set of branching weig
$wq%, obeying the conditions~3!, is given. The information
about the entire set$wq% of branching weights can alterna
tively be encoded in a single function of one real variab
namely,

V~F!5 (
q51

`
wq

q!
Fq. ~A1!
5-11
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As we shall show below, the scaling properties of the inter
geometry are directly related to the analytic properties of
function. We will often refer toV as a potential, since th
most important generating functions can be written as d
vates ofV.

In the first section we defined the generating function
the canonical partition functionszN to be

Z5 (
N52

`

zNgN5 (
N52

`

zNe2mN, ~A2!

which is nothing else but the grand-canonical partition fu
tion for the ensemble of trees with unrestricted size. O
reason why it is convenient to introduce the generating fu
tion Z is that one can write a closed self-consistency eq
tion for a first derivative of it, as we shall discuss below. T
grand canonical partition function can be written as

Z5 (
N52

`
1

N! (
TPTN

~gw1!N1~gw2!N2
•••~gwN21!NN21,

~A3!

whereNq denotes the number of vertices of orderq and the
sum begins withN52 being the number of vertices on th
smallest tree. Note that each vertex introduces a factorgwq
to the ~internal! weight of the tree in the grand-canonic
ensemble. There are two derivatives of the generating fu
tion Z which will be useful:

Z (1)[g
]Z
]g

5 (
N52

`

NzNgN, ~A4!

F[
1

g

]Z
]w1

5 (
N51

`

wNgN, ~A5!

where

wN5
]zN11

]w1
5

1

~N11!! (
TPTN11

N1WT

w1
. ~A6!

Clearly, Z (1) is a generating function for the canonical pa
tition functionszN

(1)[NzN of trees withN vertices that have
one marked vertex. Intuitively, the factorN in the sum can be
viewed as a factor that counts the possible choices of m
ing one vertex on a tree withN vertices. The derivativeF is
a generating function for the partition functionswN of
branched polymers of sizeN having one~not counted! addi-
tional marked vertex of order one. We will refer to tho
uncounted vertices as external lines. Because we do
count the empty lines in Eq.~A5! the sum starts withN
51.

We now introduce a graphical notation for the generat
functions with the following conventions: Whenever a vert
is represented by an empty circle, this means that this ve
neither introduces a weightwq corresponding to its order no
a fugacityg. Consequently, those vertices are not count
Solid circles correspond to counted vertices and there
introduce factorswq and g. Combinatorial factors that ar
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due to certain symmetries of the represented object will
ways be displayed explicitly. Links between vertices will b
represented by solid lines. As can be seen in Fig. 3,
generating functionZ will be represented by a bubble, it
derivativeZ (1) by a bubble with a filled circle inside, and it
derivativeF by a bubble with a tail having an empty circl
at the end. The tail corresponds to the external line of
tree.

The marked vertex of the ensemble is often called
root. Trees generated byZ (1) are called rooted, those gene
ated byF are called planted rooted or simply planted.

In a similar way one can also define higher derivatives
Z. Each derivativeg]/]g introduces a new marked verte
and hence another filled circle in the bubble of the graph
representation. Each derivative (1/g)]/]w1 introduces a new
external line with an empty circle at the end. One could a
define derivatives (1/g)]/]wk that introduce an external un
counted vertex connected to the bubble viak links.

The most fundamental object among all these genera
functions is the generating functionF for planted trees. With
its help, one can construct all the others. For example,
combinationgwqFq/q! is a generating function for tree
with one marked vertex of the orderq. If one sums overq,
one obtains a generating function for trees that have just
marked vertex of any order. This is nothing else butZ (1)

itself. Thus we have

Z (1)5g(
q51

`
wq

q!
Fq5gV~F!. ~A7!

If one adds a line with an empty end to this marked vert
one obtains the generating function for planted trees. T
order of the marked vertex to which the line is added con
quently increases by 1, i.e.,q→q11. Thus the correspond
ing contribution to the sum overq is gwq11Fq/q!:

F5g(
q50

`
wq11

q!
Fq5gV8~F!, ~A8!

which is a self-consistency equation forF from whichF can
be calculated. Having calculatedF, one can insert it into Eq
~A7! and determineZ (1) and so on.

As we have seen above,gV(F) generates trees with on
marked vertex,gV8(F) generates trees with one marked ve
tex, which is connected to an external line. One can ea
check that thekth derivate ofV(F):

gV(k)~F!5 (
q50

`
wq1k

q!
Fq ~A9!

FIG. 3. Graphic representations of the generating functions~a!
Z, ~b! Z (1), and~c! F.
5-12
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generates an ensemble of trees with one marked vertex
nected tok external lines. The graphical representations
gV(k)(F) for k50,1,2 are depicted in Fig. 4.

The self-consistency equation~A8! is illustrated in Fig. 5.
The content of Eq.~A7! emerges automatically from th
comparison of Figs. 3~b! and 4~a!.

Let us now illustrate how the generating function mach
ery works solving the classical problem of the tree diagr
enumeration@53#. We shall calculatezN for the caseWT
51. This is called the Cayley problem. The number of
labeled trees withN vertices is given byzNN!. The self-
consistency equation reduces to

F5geF. ~A10!

This equation can be solved forF:

F5 (
N51

`
NN21

N!
gN. ~A11!

For the weightswq51 Eq. ~A7! leads to a simple relation
betweenZ (1) andF:

Z (1)5F2g5 (
N52

`
NN21

N!
gN5 (

N52

`

NzNgN. ~A12!

From this relation, one can calculate the canonical partit
function

zN5
NN22

N!
for N>2 ~A13!

and the number of labeled tree diagrams to beNN22. For
largeN one can approximatezN by

zN5
NN22

N!
;~2p!21/2eNN25/2;em0NNg23, ~A14!

where the last step is due to the comparison with Eq.~29!.
The critical values of the chemical potential and the susc
tibility exponent take the valuesm051 andg51/2, respec-
tively. It turns out that the valueg51/2 is a generic one. I

FIG. 4. Graphic representation ofgV(F), gV8(F), and
gV9(F).

FIG. 5. Graphic representation of the self-consistency equa
~A8!.
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does not change for a wide class of the weights. In the s
tion Universality classes and singularity types two other u
versality classes of branched-polymer models withgÞ1/2
have been discussed.

We will close this appendix with the calculation of th
internal two-point function. Similarly as for the partitio
function, it is easier to work with the generating functio
Consider tree graphs that are weighted with the fugacitg
5e2m, and that have two marked vertices separated bn
>1 links. The generating functionG (2)(m,n) defined as a
sum over all such trees corresponds to the two-point func
for the grand-canonical ensemble. Figure 6 illustrates the
composition of G (2)(m,n) into the generating functions
gV8(F) andgV9(F) depicted in Fig. 4. The decompositio
is unique, since the path connecting the marked vertice
unique. The two bubbles at the ends of the chain corresp
to diagrams of the generating functiongV8(F), while the
n21 ones in between correspond togV9(F). The decom-
position leads to the following relation:

G (2)~m,n!5e2(n11)m@V8~F!#2@V9~F!# (n21).
~A15!

We can also define the internal grand-canonical two-po
function forn50. In this case the two marked vertices lie o
top of each other. Thus the two-point function reduces to
one-point functionG (2)(m,n50)5Z (1)5e2mV(F).

Relation~A15! allows us to find an explicit dependence
the grand-canonical two-point function onn and m, if we
first solve the self-consistency equation~30! for F(m). We
will be rather interested in the scaling behavior of the tw
point function near the critical point.

Let us first illustrate the calculation of the two-point fun
tion for the ensemble of trees having the natural weightWT
51. In this caseV8(F)5V9(F)5eF, where F(m) is a
solution of Eq.~30!:

m5F2 ln~F!. ~A16!

In this case the two-point function simplifies to

G (2)~m,n!5exp$2~n11!@m2F~m!#%5Fn11.
~A17!

The inversion of Eq.~A16! for F gives F512A2ADm,
when Dm5m2m05m21→01. Thus the two-point func-
tion can be approximated in this limit by

G (2)~m,n!;exp@2A2~n11!ADm#. ~A18!

We have neglected a term linear inDm in the exponent,
because we are interested in the limitDm→01 for which
Dm!ADm. What matters in this limit is the leading term i
Dm, which is related to the largeN behavior of the underly-
ing canonical ensemble:
n

FIG. 6. Decomposition of the internal two-point functio
G (2)(m,n).
5-13
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G (2)~m,n!5(
N

G N
(2)~n!e2mN5(

N
e2m0NG N

(2)~n!e2DmN,

~A19!

where G N
(2)(n) is the two-point function for the canonica

ensemble for trees of sizeN. In the last formula, we splitm
into m0 andDm, wherem0 is the critical value ofm at which
the partition function is singular. The leading terms inDm of
G (2)(m,n) are responsible for the scaling behavior while t
next-to-leading ones are responsible for finite-size corr
tions.

Formula~A19! is a discrete Laplace transform. Since w
are interested in the largeN behavior ofG N

(2)(n), we can
substitute the discrete Laplace transform by a continu
one. The inverse transform then yields

G N
(2)~n!5e1m0N

1

2p i EDmr2 i`

Dmr1 i`

dDmG (2)~m,n!eDmN.

~A20!

In particular, for the case discussed here@see Eq.~A18!#,
the exact result reads
,

.

cl.

02610
c-

s

G N
(2)~n!5~2p!21/2eNN23/2~n11!expS 2

~n11!2

2N D .

~A21!

We insertedm051 in the last formula. The normalized two
point function can be approximated by

gN
(2)~n!5

G N
(2)~n!

(
n8

G N
(2)~n8!

.
cn

N
e2cn2/2N. ~A22!

The constantc in the last formula is equal 1. We displaye
this constant, because the same formula holds for gen
trees, in general, but with a constant that depends on
choice of the weights.

We used two approximations in the last formula. We su
stitutedn11 by n. The difference between the function wit
n andn11 disappears in the largeN limit. Second, the nu-
merator and the denominator in the normalized two-po
function ~A22! have a common part (2p)21/2eNN23/2,
which does not depend onn. It cancels out. The remaining
part c/N is a normalization constant ensuring(ngN

(2)(n)
51. For finiteN, there will be some corrections to the no
malization constantc/N, but these disappear exponential
in the largeN limit.
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